
Department of Computer Science 

Oscar&H.&Mondragon,&Patrick&G.&Bridges&
University&of&New&Mexico&&

&&
Terry&Jones&

Oak&Ridge&Na@onal&Lab&



Scalable Systems Lab 

!  Coupled&HPC&codes&becoming&prevalent&(e.g.,&GTC&+&
PreData,&LAMMPS&+&Bonds,&CTH&+&ParaView&)&

!  New&scheduling&challenges&given&the&number&of&
constraints&and&performance&tradePoffs&

!  Target&case:&Simula@on&applica@on&with&coordina@on&
(e.g.,&gang&scheduling)&and&analy@cs&coPloca@on&

!  Need&to&quan@fy&the&performance&cost&of&coPloca@on&
and&propose&new&poten@al&scheduling&solu@ons&&

Mo#va#on'

2&



Scalable Systems Lab 

'
Exploratory'Analy#cs'Example'
'

3&



Scalable Systems Lab 

Resource'Alloca#on'Approaches'

4&



Scalable Systems Lab 

!  NodePlevel&Resource&Alloca@on&&
!  Intra/inter&node&synchroniza@on/coordina@on&
!  CoPloca@on&of&Coopera@ve&Enclaves&&

&

&&

Scheduling'Challenges'

5&



Scalable Systems Lab 

!  NodePlevel&Resource&Alloca@on&&
◦  Explicit&Numerical&Op@miza@on&
◦  Our&formula@on:&Constrained&Binary&Quadra@c&Programming&
&

!  Combined&coopera@ve&and&coordinated&scheduling&
◦  Build&on&earliest&deadline&first&(EDF)Pbased&gang&scheduling&
◦  Verify&suitability&of&basic&approach&to&gang&scheduling&
◦  Evaluate&addi@onal&impact&of&coPloca@on&

&

&&

Evalua#on'of'Poten#al'Solu#ons''

6&



Scalable Systems Lab 

!  Scheduling&via&Numerical&Op@miza@on&
◦  Convex&Op@miza@on:&PACORA&(Bird,&HotPar&2011)&
◦  Gene@c&algorithms&(Omara,&JPDC&2010)&
◦  BinPPacking&Heuris@cs&(Zapata,&2005)&

!  Intra/inter&node&coordinated&scheduling&
◦  Real&@me&scheduler&approaches:&Vsched&(Lin,&SC&2005)&
◦  Clock&synchroniza@on&techniques&(Jones,&2013)&

!  CoPloca@on&of&Coopera@ve&Enclaves&&
◦  InterferencePaware&run@me&systems&(Jones,&SC&2003)&
◦  UserPlevel&interfaces&for&CPU&@me&sharing&&of&coopera@ve&
applica@ons:&Goldrush&(Zheng,&SC&2013)&

&

&&

Related'Work'

7&



Scalable Systems Lab 

!  Constrained&op@miza@on&&
◦  Convex,&con@nuous&problems:&Inexpensive&solu@on&
◦  NonPconvex&or&discrete&problems:&NPPhard&

!  Goal:&Map&Palacios&virtual&cores&to&physical&cores&
!  Objec@ve:&Minimize&interference&between&virtual&cores&
!  Difficult&formula@on&problems&
◦  Even&simple&objec@ves&like&this&are&nonPconvex!&
◦  Constraints&like&“one&virtual&core&per&physical&core”&are&discrete!&&

!  Result:&NonPConvex&Binary&Quadra@c&Program&
◦  Expensive&to&solve&full&problem&at&once&
◦  Decompose&hierarchically&to&reduce&computa@onal&complexity&

&

&

&&

NodeAlevel'Resource'Alloca#on'

8&



Scalable Systems Lab 

!  Mul@level&Formula@on&
◦  Level&1:&VMs&to&Sockets&
◦  Level&2:&VCs&to&NUMA&domains&
◦  Level&3:&VCs&to&Physical&cores&

!  Constraints:&
&

!  Example:&Level&1&Objec@ve&Func@on:&&

&

&&

'
Binary'Quadra#c'Programming'(BQP)'
'

express only mapping (as in [25]). This technique correctly
handles mappings of a single physical core to a virtual core,
avoiding the problem presented by the second approach.

3.1.2 Binary Quadratic Programming Problem For-
mulation

To reduce the scope of the problem, we formulated the
problem as a sequence of non-convex binary quadratic pro-
gramming problems, where each level of the problem mapped
virtual cores to a level of system resources. In the first level,
virtual machines (VMs) are mapped to sockets (SKs). In the
second level virtual cores (VCs) belonging to those virtual
machines are mapped to NUMA nodes (NMs). Finally, in a
third level of mapping, virtual cores previously mapped to a
NUMA node are mapped to physical cores (PCs). At each
level, we estimate the performance impact of interference
between co-located workloads and do not take in account
potential cooperative behavior.

Our QP formulation is inspired by Sheng et al. [25]. We
first defined constraints to ensure that a virtual core was
mapped onto precisely one physical core, and that the max-
imum utilization of

8i✏V
NpX

j=0

xij = 1 (1)

8j✏P
NvX

i=0

Uijxij  100 (2)

where V is the set of virtual cores, P the set of physical
cores, Nv the number of virtual cores, Np the number of
physical cores, Uij indicates the percentage of physical core
j allocated to virtual core i (this is a real value between 0
and 100), and xij is set to 1 when virtual core i is mapped
into physical core j.

We then defined an objective function at each level that
mapped the result of the allocation to projected system per-
formance, based on expected VM and core interference if
mapped to the same socket, NUMA domain, or core. For
example, the objective function for mapping VMs to sockets
used was:

min

NvmX

u=0

NvmX

v=0

NskX

s=0

NskX

t=0

(IV MS(u, v)S(s, t))xusxvt (3)

where Nvm is the number of virtual machines, Nsk the num-
ber of sockets, IV MS(u, v) indicates the interference between
two virtual machines when allocated to the same socket,
S(s, t) is 1 if s = t or 0 otherwise, and xij is 1 if VM i is
mapped to socket j.

3.1.3 Performance Results
We solved this optimization problem using Matlab’s bi-

nary quadratic programming solver described in [3]. For
this experiment we used the Susitna-PRobE machines [10],
which contain 4 x86 AMD Opteron(TM) 6272 processors,
for a total of 64 cores and 8 NUMA nodes. These machines
ran Ubuntu 12.04 LTS. We used the Mantevo suite’s bench-
marks [11] MiniMD, MiniFE, HPCCG, and CoMD and run
8 VMs each one with 4 VCs. A coe�cient of sensitivity
to interference was calculated for each memory domain (i.e.
socket, NUMA, physical core) by creating contention with
the sledge benchmark described in [20].

Our goal with these experiments is to determine how well
an approximate solution to this optimization problem com-
pares to a known-good solution in a simple case. If the
approximation cannot handle simple cases, it is unlikely to
perform well in more complex cases (e.g. with power, energy,
and bandwidth bounds). On the other hand, if this approach
is comparable to a hand-generated mapping in simple cases,
it may be promising to examine its ability to handle more
complex cases where what constitutes an “optimal” schedule
is much less clear.

Figure 4: Mini-applications performance when allo-
cated with the quadratic programming mapper.

Figure 4 shows the performance of the VMs mapped using
the quadratic programming mapper compared with a map-
ping with no contention. Except for VMs 0 to 2, the per-
formance of the mini-applications is very close to the ideal
case in which they run in isolation within a NUMA domain.
Performance degradation in the first three VMs is a result
of the mapping solution obtained, which is a local minima
solution, given to the non-convex nature of the problem.
Overall, these results demonstrate the potential viability

of using numerical optimization techniques to allocate re-
sources in HPC systems. An ideal mapping strategy is not
a feasible approach due to its calculation cost, but our QP
mapping approach achieves comparable performance while
remaining computationally feasible. The results also demon-
strate the challenges faced by these techniques. In particu-
lar, expressing scheduling problems in a way that fully en-
compasses the problem to be solved while remaining compu-
tationally feasible is challenging. New techniques emphasiz-
ing di↵erent formulations or di↵erent approximations that
achieve solutions that are “good enough” are potentially of
high impact.

3.2 Synchronization Mechanisms
Next, we implemented an EDF-based gang scheduler sim-

ilar to that proposed by vsched [16] in order to examine
its ability to schedule enclaves with synchronization/coordi-
nation demands. In this case, we mapped all virtual cores
which run the enclaves of the gang to di↵erent physical cores.

virtual cores to a level of system resources. In the first level,
virtual machines (VMs) are mapped to sockets (SKs). In the
second level virtual cores (VCs) belonging to those virtual
machines are mapped to NUMA nodes (NMs). Finally, in a
third level of mapping, virtual cores previously mapped to a
NUMA node are mapped to physical cores (PCs). At each
level, we estimate the performance impact of interference
between co-located workloads and do not take in account
potential cooperative behavior.

Our QP formulation is inspired by Sheng et al. [26]. We
first defined constraints to ensure that a virtual core was
mapped onto precisely one physical core, and that the max-
imum utilization of a physical core is 100 percent.

8i✏V
NpX

j=0

xij = 1 (1)

8j✏P
NvX

i=0

Uijxij  100 (2)

where V is the set of virtual cores, P the set of physical
cores, Nv the number of virtual cores, Np the number of
physical cores, Uij indicates the percentage of physical core
j allocated to virtual core i (this is a real value between 0
and 100), and xij is set to 1 when virtual core i is mapped
into physical core j.
We then defined an objective function at each level that

mapped the result of the allocation to projected system per-
formance, based on expected interference VM and core in-
terference if mapped to the same socket, NUMA domain, or
core. For example, the objective function for mapping VMs
to sockets used was:

= min

NvmX

u=0

NvmX

v=0

NskX

s=0

NskX

t=0

(IV MS(u, v)S(s, t))xusxvt (3)

where Nvm is the number of virtual machines, Nsk the num-
ber of sockets, IV MS(u, v) indicates the interference between
two virtual machines when allocated to the same socket,
S(s, t) is 1 if s = t or 0 otherwise, and xij is 1 if VM i is
mapped to socket j.

3.1.3 Performance Results

We solved this optimization problem using the Matlab’s
binary quadratic programming solver described in [3]. For
this experiment we used the Susitna-PRobE machines [11],
which contain 4 x86 AMD Opteron(TM) 6272 processors,
for a total of 64 cores and 8 NUMA nodes. These machines
ran Ubuntu 12.04 LTS. We used the Mantevo suite’s bench-
marks [12] MiniMD, MiniFE, HPCCG, and CoMD and run
8 VMs each one with 4 VCs. We compared the results of the
quadratic programming mapping with the ideal mapping, in
which each VM is mapped in isolation to a NUMA node. A
coe�cient of sensitivity to interference was calculated for
each memory domain (i.e. socket, NUMA, physical core)
by creating contention with the sledge benchmark described
in [21].
Figure 4 shows the performance of the VMs mapped using

the quadratic programming mapper compared with the ideal
mapping. Except for VMs 0 to 2, the performance of the
mini-applications is very close to the ideal case in which
they run in isolation within a NUMA domain. Performance
degradation in the first three VMs is a result of the mapping

Figure 4: Mini-Applications Performance when al-
located with the Quadratic Programming Mapper.

solution obtained, which is a local minima solution, given to
the non-convex nature of the problem.
Overall, these results demonstrate the viability of using

numerical optimization tecniques to allocate resources in
next-generation HPC systems. However, they also demon-
strate the challenges faced by these techniques. In particu-
lar, expressing scheduling problems in a way that fully en-
compasses the problem to be solved while remaining a com-
putationally feasible to solve exactly is challenging. Work
both on di↵erent formulations and approximations that achieve
solutions that are“good enough”are both potentially of high
impact.

3.2 Synchronization Mechanisms
Next, we implemented an EDF-based gang scheduler sim-

ilar to that proposed by vsched [17] in order to examine its
ability to schedule enclaves with synchronization/coordination
demands. In this case, we mapped all virtual cores which
run the enclaves of the gang to di↵erent physical cores. We
use partitioned EDF schedulers on each logical core which
run preemptive virtual cores, in order to o↵er gang schedul-
ing capabilities. We set slice (S) and period (T) for all the
virtual cores running applications of the gang to the same
value.
Experiments were run on a Dell PowerEdge R15 machine

with two AMD Opteron(tm) 4170 HE processors. This ma-
chine has two sockets, each socket has a single NUMA do-
main and 6 (2100 Mhz) cores. We use four physical cores for
our experiments. For all the experiments, we launched two
virtual machines, each one with four virtual cores. Each vir-
tual core has a CPU utilization of approximately 38%. We
mapped each virtual core to a separate physical core (cores
0 to 3) in NUMA domain 0. Thus, we mapped two virtual
cores to each physical core and they did not migrate to other
physical cores during the experiment (partitioned schedul-
ing). This setup resulted in 76% utilization for each physical
core. Figure 5 shows the topology used for the experiments.
For each run, we launched the same benchmark on both

virtual cores to a level of system resources. In the first level,
virtual machines (VMs) are mapped to sockets (SKs). In the
second level virtual cores (VCs) belonging to those virtual
machines are mapped to NUMA nodes (NMs). Finally, in a
third level of mapping, virtual cores previously mapped to a
NUMA node are mapped to physical cores (PCs). At each
level, we estimate the performance impact of interference
between co-located workloads and do not take in account
potential cooperative behavior.

Our QP formulation is inspired by Sheng et al. [26]. We
first defined constraints to ensure that a virtual core was
mapped onto precisely one physical core, and that the max-
imum utilization of a physical core is 100 percent.

8i✏V
NpX

j=0

xij = 1 (1)

8j✏P
NvX

i=0

Uijxij  100 (2)

where V is the set of virtual cores, P the set of physical
cores, Nv the number of virtual cores, Np the number of
physical cores, Uij indicates the percentage of physical core
j allocated to virtual core i (this is a real value between 0
and 100), and xij is set to 1 when virtual core i is mapped
into physical core j.
We then defined an objective function at each level that

mapped the result of the allocation to projected system per-
formance, based on expected interference VM and core in-
terference if mapped to the same socket, NUMA domain, or
core. For example, the objective function for mapping VMs
to sockets used was:

= min

NvmX

u=0

NvmX

v=0

NskX

s=0

NskX

t=0

(IV MS(u, v)S(s, t))xusxvt (3)

where Nvm is the number of virtual machines, Nsk the num-
ber of sockets, IV MS(u, v) indicates the interference between
two virtual machines when allocated to the same socket,
S(s, t) is 1 if s = t or 0 otherwise, and xij is 1 if VM i is
mapped to socket j.

3.1.3 Performance Results

We solved this optimization problem using the Matlab’s
binary quadratic programming solver described in [3]. For
this experiment we used the Susitna-PRobE machines [11],
which contain 4 x86 AMD Opteron(TM) 6272 processors,
for a total of 64 cores and 8 NUMA nodes. These machines
ran Ubuntu 12.04 LTS. We used the Mantevo suite’s bench-
marks [12] MiniMD, MiniFE, HPCCG, and CoMD and run
8 VMs each one with 4 VCs. We compared the results of the
quadratic programming mapping with the ideal mapping, in
which each VM is mapped in isolation to a NUMA node. A
coe�cient of sensitivity to interference was calculated for
each memory domain (i.e. socket, NUMA, physical core)
by creating contention with the sledge benchmark described
in [21].
Figure 4 shows the performance of the VMs mapped using

the quadratic programming mapper compared with the ideal
mapping. Except for VMs 0 to 2, the performance of the
mini-applications is very close to the ideal case in which
they run in isolation within a NUMA domain. Performance
degradation in the first three VMs is a result of the mapping

Figure 4: Mini-Applications Performance when al-
located with the Quadratic Programming Mapper.

solution obtained, which is a local minima solution, given to
the non-convex nature of the problem.
Overall, these results demonstrate the viability of using

numerical optimization tecniques to allocate resources in
next-generation HPC systems. However, they also demon-
strate the challenges faced by these techniques. In particu-
lar, expressing scheduling problems in a way that fully en-
compasses the problem to be solved while remaining a com-
putationally feasible to solve exactly is challenging. Work
both on di↵erent formulations and approximations that achieve
solutions that are“good enough”are both potentially of high
impact.

3.2 Synchronization Mechanisms
Next, we implemented an EDF-based gang scheduler sim-

ilar to that proposed by vsched [17] in order to examine its
ability to schedule enclaves with synchronization/coordination
demands. In this case, we mapped all virtual cores which
run the enclaves of the gang to di↵erent physical cores. We
use partitioned EDF schedulers on each logical core which
run preemptive virtual cores, in order to o↵er gang schedul-
ing capabilities. We set slice (S) and period (T) for all the
virtual cores running applications of the gang to the same
value.
Experiments were run on a Dell PowerEdge R15 machine

with two AMD Opteron(tm) 4170 HE processors. This ma-
chine has two sockets, each socket has a single NUMA do-
main and 6 (2100 Mhz) cores. We use four physical cores for
our experiments. For all the experiments, we launched two
virtual machines, each one with four virtual cores. Each vir-
tual core has a CPU utilization of approximately 38%. We
mapped each virtual core to a separate physical core (cores
0 to 3) in NUMA domain 0. Thus, we mapped two virtual
cores to each physical core and they did not migrate to other
physical cores during the experiment (partitioned schedul-
ing). This setup resulted in 76% utilization for each physical
core. Figure 5 shows the topology used for the experiments.
For each run, we launched the same benchmark on both

9&



Scalable Systems Lab 

!  Goal:&Compare&our&numerical&op@miza@on&based&on&a&
nonPconvex&&formula@on&against&op@mal&solu@on&

!  Problem:&Map&8&VMs&to&a&64Pcore&machine&with&8&
NUMA&domains&

!  Setup&
◦  Each&VM&has&8&VCs&
◦  Each&VM&runs&a&&
8Pprocceses&miniApp&

!  Result:&nearPop@mal&in&5&&
of&8&cases,&far&from&op@mal&
in&other&cases&&

&&

BQP'oFen'close'to'op#mal'schedule'

10&



Scalable Systems Lab 

!  Solu@on&explored:&EDF&(Earliest&Deadline&First)Pbased&
gang&scheduler&+&coPlocated&coopera@ve&applica@on&

!  EDF&Scheduler&added&to&Palacios&VMM&
!  Experiment&1:&verify&EDFPbased&gangPscheduling&&
!  Experiment&2:&GangPscheduled&simula@on&+&coP

located&analy@cs&
◦  Create&one&addi@onal&VM&on&one&core&
◦  Change&in&u@liza@on&could&impact&quality&of&gang&scheduling&

&
&

&&

Combined'coopera#ve'and'coordinated'
scheduling'

11&



Scalable Systems Lab 

Experimental'Setup'

12&

!  VCs&belonging&to&a&VM&
have&same&realP@me&
schedule&

!  Each&VM&runs&a&4P
Processes&MPI&
benchmark&&

!  CoPlocated&analy@cs&
should&use&only&idle&CPU&
@me&



Scalable Systems Lab 

!  Control&granularity&of&
synchroniza@on&with&
length&of&deadline&

!  This&also&increases&
scheduling&overheads&

!  Used&rela@vely&long&
deadlines&in&this&case&
(~130ms)&

Basic'RealA#me'Gang'Scheduling'Works'

13&



Scalable Systems Lab 

CoAloca#on'counters'Gang'Scheduling'

14&

!  Applica@ons&lose&all&
gang&scheduling&benefits&

!  BT&an&outlier&due&to&
addi@onal&cache&effects&
(address&via&GoldrushP
style&techniques)&

!  Need&to&new&techniques&
to&preserve&benefits&of&
gang&scheduling&



Scalable Systems Lab 

Conclusion'
!  Numerical&op@miza@on&solu@ons&show&some&poten@al&
to&solve&the&problem&of&resource&alloca@on&however&it&
is&not&clear&if&they&are&sufficient&at&larger&scales&

!  Current&realP@me&scheduling&approaches&like&EDF&
scheduling&provide&gang&scheduling&capabili@es&&

!  Enhancements&to&this&scheduling&approaches&are&
needed&to&avoid&performance&degrada@on&in&the&gang&
when&coopera@ve&applica@ons&are&coPlocated&

&
&

15&



Scalable Systems Lab 

Future'Work'
!  Efficient&mul@Pobjec@ve&op@miza@on&approaches&that&
consider&coopera@ve&behavior&and&addi@onal&
op@miza@on&criteria&are&poten@ally&of&high&impact&

!  Enhanced&realP@me&scheduling&approaches&could&
provided&gang&scheduling&+&BW&reclaiming&
mechanisms&

!  Lightweight&OS&and&user&level&interfaces&for&
coopera@ve&and&coordinated&scheduling&&

!  Coordina@on/synchroniza@on&mechanisms&between&
nodePlevel&schedulers&

&
&

16&



Scalable Systems Lab 

Acknowledgements'
This&work&was&supported&in&part&by&the&2013&Exascale&
Opera@ng&and&Run@me&Systems&Program&from&the&DOE&
Office&of&Science,&Advanced&Scien@fic&Compu@ng&
Research,&under&award&number&DEPSC0005050,&program&
manager&Sonia&Sachs,&and&by&the&ColcienciasPFulbright&
Colombia&and&The&Universidad&Autonoma&de&Occidente&
through&the&Caldas&scholarships&program.&&

17&



Department of Computer Science 

Thank'you!'
Ques#ons?'

Contact:&omondrag@cs.unm.edu&


